Hoch, J. C., Dobson, C. M. \& Karplus, M. (1985). Biochemistry, 24, 3833-3839.
Moriwaki, H., Matsumoto, T., Nagai, T. \& Oshima, T. (1996). Unpublished results.
Oshima, T., Tamada, K. \& Nagai, T. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 3325-3333.
Stewart, N., Edwards, C. \& Gilmore, C. J. (1994). CRYSTAN. Program for the Solution and Refinement of Crystal Structures. Mac Science, Japan.

Acta Cryst. (1996). C52, 2271-2272

(1E,3Z,5E)-2,5-Diaza-1,6-bis(dimethyl-amino)-1,3,5-hexatriene-3,4-dicarbonitrile

Hasan Küçükbay, ${ }^{a}$ Engin Çetinkaya, ${ }^{a}$ Dinçer Ülkü ${ }^{b *}$ and M. Nawaz Tahir ${ }^{b}$
${ }^{a}$ Department of Chemistry, Inönü University, Malatya 44069, Turkey, and ${ }^{b}$ Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey.
E-mail: dulku@eti.cc.hun.edu.tr

(Received 5 December 1995; accepted 1 April 1990)

Abstract

The title structure consists of discrete $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{6}$ molecules which have a cis configuration and an extended conjugation. The molecules are slightly distorted from planarity.

Comment

N, N-Dimethylformamide dimethyl acetal reacts as a formylating agent with primary amines providing amidines which may be used in the synthesis of more complex molecules (Abdullah \& Brinkmeyer, 1979; Williams \& Brown, 1995), for example, N, N-dimethylformamide dimethyl acetal is known to react with o-phenylenediamine to give benzimidazole (Stanovnik \& Tisler, 1974). In contrast, the analogous reaction with diaminomaleonitrile (DAMN) under mild conditions affords bis(amidine) (I), instead of the expected 4,5-dicyanoimidazole heterocycle, in almost quantitative yield. Since the stereochemistry of (I) could not be established definitely on the basis of spectroscopic data, an X-ray analysis was conducted.

The title molecule has a cis configuration and an extended conjugation (Fig. 1). Intramolecular bond lengths and angles have usual values. There are no
unusual close intermolecular contacts and the asymmetric unit is not quite planar. The dihedral angles between the planes defined by $A(\mathrm{C} 5, \mathrm{~N} 3, \mathrm{C} 3, \mathrm{~N} 2), B(\mathrm{C} 10, \mathrm{~N} 6$, $\mathrm{C} 8, \mathrm{~N} 5)$ and $C(\mathrm{~N} 1, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 7, \mathrm{C} 6, \mathrm{~N} 4)$ are $A / B 6(1)$, $B / C 8$ (1) and $A / C 3$ (2) ${ }^{\circ}$.

Fig. 1. An ORTEP (Johnson, 1965) drawing of (I) with the atomnumbering scheme. The displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles of arbitrary radii.

Experimental

A mixture of diaminomaleonitrile ($10 \mathrm{~g}, 92.59 \mathrm{mmol}$) and N, N-dimethylformamide dimethyl acetal ($28 \mathrm{ml}, 210.08 \mathrm{mmol}$) in toluene (20 ml) was heated for 1 h in a water bath and for an additional 30 min at 403 K in order to remove the methanol formed. All volatiles were then driven off in vacuo. The residual crude brown product was crystallized from dimethyl sulfoxide (35 ml) to afford crystals of the title compound.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{6}$
$M_{r}=218.263$
Monoclinic
$P 2_{1} / a$
$a=7.671(1) \AA$
$b=20.414(2) \AA$
$c=8.326(2) \AA$
$\beta=112.39(2)^{\circ}$
$V=1205.6(5) \AA^{3}$
$Z=4$
$D_{x}=1.203 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scans (MolEN; Fair, 1990) $T_{\text {min }}=0.967, T_{\text {max }}=$ 0.998

2711 measured reflections
2343 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10.68-18.18^{\circ}$
$\mu=0.075 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism
$0.35 \times 0.25 \times 0.15 \mathrm{~mm}$
Brown

1098 observed reflections
$[I>3 \sigma(I)]$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=26.32^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 25$
$l=-10 \rightarrow 9$
3 standard reflections frequency: 120 min intensity decay: 4.76%

Refinement

Refinement on F
$R=0.045$
$w R=0.043$
$S=0.76$
1098 reflections
145 parameters
Unit weights applied
$(\Delta / \sigma)_{\max }=0.00014$
$\Delta \rho_{\text {max }}=0.12 \mathrm{e}_{\AA^{-3}}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$
Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathrm{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
N1	0.4286 (4)	0.2827 (2)	-0.1504 (4)	5.66 (9)
N2	0.8457 (4)	0.3047 (1)	0.2060 (3)	3.55 (6)
N3	0.9199 (4)	0.2034 (1)	0.3383 (4)	4.27 (7)
N4	0.5004 (4)	0.4662 (2)	-0.2117 (4)	5.51 (9)
N5	0.8922 (4)	0.4414 (1)	0.1704 (3)	3.46 (6)
N6	1.0184 (4)	0.5439 (1)	0.2638 (4)	4.26 (8)
C1	0.5564 (5)	0.3099 (2)	-0.0570 (4)	3.90 (9)
C2	0.7210 (4)	0.3404 (2)	0.0716 (4)	3.39 (8)
C3	0.8128 (4)	0.2425 (2)	0.2130 (4)	3.88 (8)
C4	0.8711 (6)	0.1348 (2)	0.3419 (6)	7.3 (1)
C5	1.0810 (5)	0.2278 (2)	0.4829 (5)	4.9 (1)
C6	0.6040 (5)	0.4387 (2)	-0.0962 (4)	3.90 (8)
C7	0.7438 (4)	0.4062 (2)	0.0533 (4)	3.41 (8)
C8	0.8909 (5)	0.5044 (2)	0.1546 (4)	4.09 (9)
C9	1.0004 (6)	0.6147 (2)	0.2419 (6)	6.6 (1)
C10	1.1707 (5)	0.5195 (2)	0.4160 (5)	4.8 (1)

Table 2. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

	$1.137(4)$	$\mathrm{N} 5-\mathrm{C} 8$	$1.291(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.373(4)$	$\mathrm{N} 6-\mathrm{C} 8$	$1.326(5)$
$\mathrm{N} 2-\mathrm{C} 2$		$1.457(5)$	
$\mathrm{N} 2-\mathrm{C} 3$	$1.29(5)$	$\mathrm{N} 6-\mathrm{C} 9$	$1.446(5)$
$\mathrm{N} 3-\mathrm{C} 3$	$1.32(4)$	$\mathrm{N} 6-\mathrm{C} 10$	$1.449(5)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.452(5)$	$\mathrm{C}-\mathrm{C} 2$	$1.370(5)$
$\mathrm{N} 3-\mathrm{C} 5$	$1.44(4)$	$\mathrm{C} 2-\mathrm{C} 7$	
$\mathrm{~N} 4-\mathrm{C} 6$	$1.135(4)$	$\mathrm{C} 6-\mathrm{C} 7$	
$\mathrm{~N} 5-\mathrm{C} 7$	$1.385(4)$		
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$118.0(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$120.9(4)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 4$	$120.8(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 7$	$122.2(3)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 5$	$121.7(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$116.9(3)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 5$	$117.4(3)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 3$	$123.6(3)$
$\mathrm{C} 7-\mathrm{N} 5-\mathrm{C} 8$	$118.2(3)$	$\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 7$	$177.1(5)$
$\mathrm{C} 8-\mathrm{N} 6-\mathrm{C} 9$	$120.6(4)$	$\mathrm{N} 5-\mathrm{C} 7-\mathrm{C} 2$	$122.4(3)$
$\mathrm{C} 8-\mathrm{N} 6-\mathrm{C} 10$	$122.0(3)$	$\mathrm{N} 5-\mathrm{C} 7-\mathrm{C} 6$	$120.3(4)$
$\mathrm{C} 9-\mathrm{N} 6-\mathrm{C} 10$	$117.3(3)$	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$117.2(4)$
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	$175.6(4)$	$\mathrm{N} 5-\mathrm{C} 8-\mathrm{N} 6$	$124.1(4)$

All H atoms were taken from difference maps and assigned $U_{\text {iso }}$ values equal to $1.3 U_{\text {eq }}$ of the parent atoms. A riding model was adopted.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN SIR. Program(s) used to refine structure: MolEN LSFM. Molecular graphics: MolEN ORTEP (Johnson, 1965). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: SK 1005). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Abdullah, R. F. \& Brinkmeyer, R. S. (1979). Tetrahedron, 35, 16751678.

Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Stanovnik, B. \& Tisler, M. (1974). Synthesis, pp. 120-121.
Williams, D. M. \& Brown, D. M. (1995). J. Chem. Soc. Perkin Trans. pp. 1225-1228.

Acta Cryst. (1996). C52, 2272-2274
Coumurrayin

Ranikant, ${ }^{a}$ Vivek K. Gupta, ${ }^{a}$ Attar Singh, ${ }^{a}$ Madan LaL ${ }^{a}$ and Babu Varghese ${ }^{b}$
${ }^{a}$ X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi-180 004, India, and
${ }^{b}$ Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Madras-600 036, India

(Received 8 January 1996; accepted 26 March 1996)

Abstract

In the title compound, 5,7-dimethoxy-8-(3-methyl-2-butenyl)- 2 H -1-benzopyran-2-one, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$, the coumarin ring system is planar. The methoxy groups at C 5 and C 7 are coplanar with the coumarin moiety. The side group located at C 8 is planar and at an angle of $108.29(7)^{\circ}$ with respect to the coumarin nucleus. The crystal structure is stabilized by van der Waals interactions.

Comment

Coumarin derivatives are biologically important (Michel \& Durant, 1976; Schmalle, Jarchow, Hausen \& Schulz, 1982). The structure of coumurrayin, (I), a coumarin isolated from the roots of Seseli Sibiricum Benth. (Kumar, Gupta, Banerjee \& Atal, 1978), is presented in this paper as a part of our programme on the crystal structure analysis of some naturally occurring coumarins (Rajnikant, Goswami, Yadava \& Padmanabhan, 1991, 1993; Rajnikant, Goswami, Yadava, Padmanabhan, Gupta \& Banerjee, 1993; Gupta et al., 1993; Magotra, Gupta, Rajnikant, Goswami \& Thappa, 1995).

